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Abstract

A general me@hod of constructing system models for the solution of
discrete time stochastic control and estimation problems is presented
The method involves the application of modern martingale theory and entails

the judicious choice of certain sigma-algebras and martingales. General

estimation equations are derived for observations taking values in a

countable space, and previously obtained estimation equations are exhibited

as special cases. Finally, an example of the application of these methods

to a stochastic control problem is analyzed.
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I. Introduction

Much recent research has been directed toward the solution of
estimation and stochastic control problems by means of the application
of modern martingale theory [1]-[8]. 1In this paper we will be concerned
with discrete time estimation and control problems in which the
observations take values in a countable set. in particular, we will

consider models of the form [11], [14]

x(t41) = £ (x",u(t)) + w(tH) (1)

(661 = gt(xt+1,zt,u(t)) + v(t+l) (2)

where x(t) is the state at time t, xt A {x(0),...,x(t)}, z(t) is the
observation at t, 2% A {z(0),...,2z(t)}, w and v are noise processes, and
the control u(t) is measurable with respect to c-algebra o(zt) generated
by zt. Segall [2] first derived discrete time estimation equations for
l-variate point process observations; however, he only allows ft in (1)
to depend on ztm1 (not on zt, as we require here), and finds the one-step
predictor E[x(t)lzt_ll. Brémaud [4] has generalized Segall's work to
k-variate point process observations.

In Section II we will demonstrate a method fof constructing a
system model leading to the solution of a given estimation or control
problem with any prespecified (classical) information structure. This
is accomplished by a judicious choice of sigma-algebras and martingales,
and includes the information structures of Segall [2], Brémaud [4],

Brémaud and Van Schuppen [5],[6], #and ovr problem (1)-(2) as special

P—

|
|
]
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cases. In Section III general estimation equations are derived for the
models of Section II; it is assumed that the observations take values

in a countable set. Vaca and Tretter [9] have derived analogous
equations using an approach based on likelihood functions. As an example
of (1)-(2), the control of a finite state Markov process is considered
in Section IV; as in continuous time [3], the separation principle holds

and a finite dimensional estimator is constructed.
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II. Abstract System Model and Estimation Equation

Consider a discrete time observation process y(t) which is modulated
by the signal or state process x(t), where te {0,1,...,T}. Assume both
x(t) and y(t) are integrable processes. In this paper, we will restrict
the value of the observation process y(t) at time t to belong to a
countable set {pl,...,pi,...}.

By using the martingale decomposition method, we can construct a
general system model as follows. Let Gt and Bt be two increasing families
of sigma-algebras such that GtD Bt D Ft' 4 of{y(s),s<t'}, where t' < t;

methods for judiciously choosing t', G _, and Bt for a particular problem

t
will be indicated below. Also, assume x(t) is Bt-measurable. Let

z,(t) & I(y(t)=¢),

where I is the indicator function; thus y(t) = Z Py zi(t). Throughout
i=1
this paper, the observation will be described equivalently by either y(t)

or {zi(t), i=1,2,...}. We define, for 1i=1,2,...,

B
w(t+l) 4 x(t+1) - E © (x(t+1))

G
v (t41) g z,(t41) - E “[z,(e4D)],

B
where E t[-] denotes conditional expectation. Thus w(t+l) and vi(t+l)

1
are Bt+1 and Gt+1 martingale difference processes, respectively (1], [2].

1-(t+1) is a At+1 martingale difference process if m(t+l) is measurable
A
with respect to At+1 and E Y(m(t+1)) = 0. The reader is referred to

[1]) for more details.

%9 04 12 01

e

U

S S
v

T

AR %
i e, de
v . 3

‘

A - .



In other words, we have the system model
x(t+l) = w(t+l) (3

zi(t+1) = ui(t+1) +vi(t+1) (4)

B G
where ft AE t[x(t+1)] and ui(t+1) = E t[zi(t+1)].

It is desired to compute the least square estimates of x(t+l) given

the observations Ft'+1; this estimate is the conditional mean

F
i(t+1|t‘+1) AE t'+1(x(t+l)). Let
F

F(t+]) = x(eHl]e'+1]) - E O (x(t+1))

= - ' - f
x(t+1|t'+1) ft|t'

F
- t' -
ftlt' AE (ft)' Then it is easy to see that w(t+l) is an Ft'+1
martingale difference process. Similarly, let
Ft'
vi(t'+1) = zi(t'+1) - E [zi(t'+1)]

where

= zi(t'+1) - ui(t'+1)

F
~ t ' - .
' & ' ' &
where ui(t +1) E (ui(t +1)). Also, vi(t +1) is an Ft'+l martingale

difference process. Thus we have the abstract estimation equations

x(t+1|t'+1) = Etlt' + w(t+l)

2, (t'41) = ﬁi(t'-i-l) + ;1(t'+l), (6)

i=1,2,...

In the next section, we will determine w(t+l) in (5) in terms of the

observation process (6) and Ft" thus generating a "recursive" estimation

equation.

This model provides a general framework within which many problems

(5)

S—
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can be analyzed by proper choice of Gt’ Bt’ and t'. For example, by

t+1. yt} = 0{xt+1, zt], Bt =G .,and t' = t-1, we

choosing Gt = o{x i

arrive at Segall's framework for deriving the one-step predictor [2];

notice from (3) that this yields a system equation of the form
t =
x(e+1) = £, y5 Y+ w(e). AT

The model of Brémaud and Van Schuppen [5], [6] for deriving the one-step
predictor is obtained by setting Bt = Gt—l and t' = t-1. The model of
(1)-(2) can be accommodated by defining Gt = o{xt+1,yt} and Bt = o{xt,yt},
so that we have ft = ft(xt,yt) and B = gt(xt+1,yt). The filtering and
prediction problems for this model are derived by setting t'=t and t'<t,
respectively. Other problems, including the smoothing problem, can be
approached similarly.

Estimatién equations for special cases (such as those mentioned
above) will follow immediately, by the proper choice of o-algebras,

from the results of the next section. Thus the need to rederive such

estimation equations for each special case is eliminated.

|
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ITII. General Estimation Equations

As noted before, we need to determine w(t+l) in (5) in terms of the

observation process (6) and F The general representation of the

£l

Ft,+l—martinga1e difference G(t+1) is described in the following theorem.

The proof is similar to that of Brémaud [4, p.36] for a special case.

Theorem 1: Consider the system model (3)-(4). If y(t) takes values in a
countable set {pl,pz,...}, where we assume that each pi occurs with
non-zero probability so that ﬁi(t'+l)3>0 for all i, then §(t+1|t'+1) can

be expressed in the form

- F

- - SR 1 ! ' ' S '
x(t+1|t'+1) ftlt, + 121 —————-ﬁi(t,ﬂ) E - [(f, +w(t+1)) (2, (t'+1) - il (£'+1))]
. zi(t'+1)
Proof: Notice that
Fera -
-~ ' % -~ e
x(t+l|t'+1) ft|t:' E [x(t+1) ftlt']
Ft:'+1

= E [ft + w(t+l) - ftlt']°

Thus, we want to prove that, with probability one,

F - F
t'+l 2 1 )
E [£t+w(t+1)-ft|t,] 1'2.1 mn [(£, +w(t+1))
. (zi(t'+l)—ﬁ1(t'+1))] z, (t'+1) (8)
7

—

™
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By Lemma 10.1.3 of [13], (8) holds if and only if

© F
~ 1 t'
E[(ft+W(t+l)-ft|t') Ht'+1] = E{[izlzm E [(ft+w(t+1))

(zi(t'+1)-ﬁi(t'+1))]£ . [zi(t'+1)1] Ht.ﬂ} 9

for all Ft'+l measurable random variables Ht'+l which are almost surely

bounded. Also, by Doob's representation theorem [16], we have
= H(t'+1,y(t'+1)) (10)

For
where H(t'+1,0,), 1=1,2,..., are F,,, -predictable (E 5 (H(t'+1,p,)) =

t'+l

H(t'+1,pi)) » bounded processes.

After some calculations, the right-hand side of (9) becomes

@ H(t'+l’pi) Ft' ¥
E 1§lgm— E [(ft+w(t+1) -ftlt') zi(t +1)] zi(t +1)§

By (10), we have that the left-hand side of (9) can be written

E[(ft+w(t+1)-ft't,) Hc,+l] = E{ 121 (ft+w(t+1)-§tlt.) H(t'+1,pi)

. zi(t'+1)}

Thus, one needs only check the equality

E ;(ft +w(t+l) - £ ) H(t'+1,pi) zi(t'+1)

t|e’

H(t'+l,pi) Ft’ 2 ' :
= E”;‘Ti—('?"-l-—l)_ E [(ft+w(t+l) -ftlt') r.i(t +1)] zi(t +1)f (11)

~




m
X pizi(t))’ then (as a special case of Theorem 1) i(t+1lt'+1) can be
i=1
9
g:
' 2 — N A— —— - B

But the right-hand side of (11) is equal to (using predictability of H)

E t'[(ft-n-:(:;+1)--%t|t,) z,(€'+1)] z, (t'+1)

F_, H(t'+1,pi) F
i

t ———————— e
~ 0
ui(t +1)

B3 o
= E ’H(t'+l,pi) E £ [(ft-+w(t+1)-ft|t,) zi(t'+l)]$

F., .
=EE°" [H(t'+1,0 ) (£, +w(t+l) -ftlt.) z, (£'+1)],

which equals the left-hand side of (11). This proves the theorem.

The following corollaries specialize Theorem 1 by judicious choice

of t' and the sigma-algebras Gt and Bt'

Corollary 1. Under the assumptions of Theorem 1, if we set Bt = o{xt,yt},

Gt = o(xt+l,yt}, and t'=t, we have the filtering result
° 1 Fe
-~ + -~ + -A
x(t+1]t+1) ftlt 121 ’SI(':TD‘E [(£, +w(t+1)) (uy (£+1) - 11, (£41))]
. zi(t+1).

Corollary 2. Under the assumption of Corollary 1l but with t' = t-1, we

have the one-step predictor

© F
- - 1 t-1 .
x(t+l|t) = fele-1* 121 NG) E 7 UL(E, +w(tH)) (2, (8) = i, (£))] 2, (¢).

If y(t) takes its values in a finite set {pl,...,pm} (1.e., y(t) =

g e — g —— e
2 .

e




m
) z,(t'H) = 1, (13)
i=1
m ~
) u(e'4+1) =1, (14)
i=1 :
Now,
i ' 10

expressed in the form

F
2 ' el _____1__ t' ' A '
x(t+1]t'+1) = ftlt'+1zl NGV E - [(f, +w(t+1)) (2, (t'+1) - i, (£'+1))]

. zi(t'+1) . (12)
However, an alternative proof which is of independent interest is also
presented here; the proof is based upon the martingale representation

theorem [5].

Corollary 3. Under the assumptions of Theorem 1, if y(t) e{pl,...,pm},

then i(t+llt'+1) can be expressed as in (12).

Proof: Assume the signal process x(t) is scalar. By the martingale
representation theorem and the innovations theorem [5], there exist

Ft'+1 predictable processes Ki(t'+1), i=1,...,m, such that

.. m
w(t+l) = x(t+l]t'+l) - Eeler ™ ) K (£'41) [z, (t'+1) - ﬁi(t'+1)]
i=1

since w(t+l) is an Ft'+1 martingale difference process. Note that




2 K (£'41) [z, (t'+1) - u (t'+1)]

i=1
m-1 m-1

= 1 K, (e'+1) [z, (¢! +1)-u (e'+1)] - } K L) [z (e +1) - (t'41)]
i=1 i=1
m-1 ' } :

- 121 (K, (£'+1) = K _(£'+1)) [z, (t'+1) - & (t'+1)]

The first equality above is obtained by using (13) and (14).

Let Li(t'+1) = Ki(t'+1) - Km(t'+1). It is easy to see that Li(t'+l)

is an F '+l predictable process. Thus, we have

m-1
) L, (t'+1) [z, (t'+1) - iy (e'41)) (15)

X(t+1|t +1) - ftlt' o e

Multiplying Loth sides by z; (t' +1)-u (t'+1) for i=1,...,m-1, then

taking conditional expectations with respect to Ft" we have

I

“'v"t"—""’r‘ WY
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F

pe=

o )
' = '
ul(t +1) Hy(e'+1)

S _f & '
My (e'+1) u, (e'41)

4 —ﬁm.l(t'+1)ﬁ1(t'+1)
p— : T
Ll(t +1)
] A
Lm_l(t'+1)

E t'[(ft + W(EHD) (zy (£'41) = i (£'41))]

L1‘«: £ [(ft+w(t.+l)) (z _,(t'+1) - ﬁm_l(c'ﬂ)) ]_

—

sy ¥ '
g (e'41) w, (e'+1)

By (E41) - G2 (e'+1)

K 5

Ll(t'+l)

A - .

(t'+1)

LLm-l

= ' 2 '
ul(t +1)um_1(t +1)

& tet A '
uy(t'+)u . (e'+1)

.

(t'+1) -2

'
m—l(t +1)

um—l

It can easily be shown that A is a positive definite matrix, so

we can find a unique solution for Li(t'+1), el .ym=1,

calculations, we have

1
Li(t +1) ﬁi

By some

F., ~ :

T B LG, + w(eH) (2, (£141) = i (£41))]
1 Ft' -

Ty B [E +w(tH]))(z, (e'41) - (e'41))]

Yo




—— T VAT

—

Substituting into (15), we have

m-1 F
& ] % = 1 t' N ~ '
x(t+1] £'+1) “Eeer [121 i——-————ﬁi(t,ﬂ) E " [(£, +w(tH1)) (2, ('41) - il (t'+1)))

F -

g B C L, +u(eHD)) (2 (£'4D) -6 _(£'41)))

+
um(t +1)

* (2, ('41) - (£'+1)

F

1 E t'[(ft+w(t+1))(zi(t'+1)—ﬁi(t'+1))]§

3 1212'31“'“)

. (zi(t'+1)-ﬁ1(t'+1))

m 1 Ft' ' G
= izl g ﬁi(t'+1) E [(ft+w(t+l))(zi(t +1) -ui(t +1))]f

. zi(t'+1).

The second equality is obtained via (13) and (14). After expanding

the second equality and interchanging the summation and conditional
expectation, the last equality is also obtained by (13) and (14). Thus,
the theorem is proved for scalar x(t). Obviously, we can generalize to
vector processes x(t) by using each component of x(t) in the above proof.
Then, we combire all the components to get the result, which remains the

same in the vector case.

13
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Theorem 2: Under the assumptions of Theorem 1, the smoothed estimate

satisfies
s t-1 = 4 F$ |
x(tlt)::x(tlt) + szt i EI?;IIY E [(ft-fw(t+1))(zi(s+1)-ui(s+1))] zi(s+l) ‘
(16)
for t > t. i
Proof: Let |
Fs+1 Fs ‘
n(stl) = E (x(t)) - E "(x(t)) (17) <
|

for s > t. Then it is easy to prove that n(s+l) is an Fs+l-martingale

difference process. By summing the terms (17) from s=t to s=E-1, we f

have -1
x(t]T) = x(t|e) + § n(s+1). f
s=t :

By using a proof similar to that of Theorem 1, it can be shown that

o

F
n(s+l) = J T,‘-i(:—ﬂ-)-g SL(E, +w(t+)) (2, (s41) - i, (s41)) ] 2, (o)

i=1

Thus, we have the result (16).

Remarks: (i) The form of the estimation equations obtained by
Segall [2] for a special case follows from (12) by a simple calculation.
(i1) Results analogous to Corollaries 1 and 2 and Segall's

results [2] can also be derived for the smoothed estimate. In addition,

estimation equations for other information structures can be derived by

14




judicious choice of Gt’ Bt’ and t' (or t in smoothing problems), as
discussed at the end of Section II.

(iii) 1In general, the optimal nonlinear estimator is infinite
dimensional; in other words, x(t+1|t'+1) will depend on all higher order
conditional moments. Representation results for higher order conditional
moments can also be derived by using the methods described above.

(iv) In'particular, in Corollary 1, Etlt = EFt[ft] is actually .
the one step predicted estimate i(t+1|t). Since ft is a function of xt
and yt, i(t+1|t) cannot be computed simply in terms of ﬁ(tlt), but in
fact depends in general on all of the conditional probability distributions
P(x(s)IFt), s <t. However, a special case which is given in the next

section will result in a finite dimensional recursive estimator.




IV. Example -- Stochastic Control Problem

In this section, we present an example illustrating the application
of the techniques in Section III to a class of stochastic control problems
of the form (1)-(2). For these problems the optimal filter is finite
dimensional and the separation principle [10] holds (that is, the optimal
control u(t) is only a function of the filtered estimate &(tlt)). Thus,
we can see the strong relationship between the estimation and stochastic
control problems. This example is motivated by the corresponding |
l-variate continuous time problem [3] and the 1-variate discrete time

prediction example of [2]. For a different approach, see [12].

Consider a stochastic control problem in which the signal is a

controlled finite state Markov chain x(t) such that x(t) e{Yl,Yz,...,Yn}.

Let the initial probabilities be : |

K :
L P{x(0)=yk}, S e R
and transition probabilities be

w:j(u(t)) = P{x(t+l)=v, | x(t)= Yy» u(t))

e ——————

where u(t) is the control at time t. Define, as in [2], [3],

r ' Yk x(c;)-irj

aj(t) =

b ; 0 otherwise

! and the n-vector

' 5 a(e) = [a,(t) ... un(t)]T

16




and the nxn matrix '

Q (u(e) = [ u(e)).

The observation process y(t) is assumed to take values in a countable

set {pl,oz,...,pm} and the equivalent point processes zi(t) are defined as in
Section II. As in Corollaries 1-2, we let t'=t, Gt(u) = o{xt+1,yt},
Bt(u) = o{xt,yt}, and Ft(“) = o{yt}, where u is the control law. The

admissible control laws are such that u(t) is Ft(u) measurable, and an

optimal control is one that optimizes the performance index

T-1
J(u) = E{L (x(T)) + {0 L, (x(t),u(t))},
t= i

where Lt(x(t),u(t)), t=0,...,T, are measurable functions.
We first derive a system model of the form (3)-(4) with the relevant .

choice of o-algebras. Let

w,(t+1) = a,(t+l) - tf w3 (u()) o (t);
. J k=1 °© B

then w_(t+l) is a B_, . (u)-martingale difference process, since

3 t+l

B B B ix
E “[w,(t+1)] = E S[a,(t41)] - E [ § v(ue)) o (e)]
3 3 kel © k

g X T Kk
- Lo s - T ree) g - o |

In vector form, the signal model thus becomes

a(t+l) = QI(u(t))a(t) + w(eH) (18)

17




In an analogous manner to [2],

X3 (u(t-1)) = Pix(t+l)=y,, y(£)=p, |x(t)=y, ,u(t-1)}
1%¢ 3 1 k

and define the nxn matrix
1)) = L3 P
iSt(u(t 1)) 15¢ (u(t-1))].

The observations are given by (4), where

G n n

u (t4) 8 B Sz (£4)] *

321 kzl 1Spp1 (U()) o (£41)

I, 1Spey (u(t)) a(e+l) (19)

where len’-[ 1....1) is a n-row vector. Now we substitute (18) and (19)

into the filtering equation (12) and obtain a finite dimensional filter as

follows:

1

im
p 5 - el
a(t+l|t+l) = Q, (u(t)) a(t|t) + 1?-1 i (t41)

+ | dia ( !ZI Lu(e)a (t|t)) S, . (u(t)) I
g k=1 t k 1 t+l1 nx1

zi(t+1) (20)

- QGea() dcelo) i ()]

where ﬁi(t+1) =T 1sz+1(u(t)) Q:(u(t)) &(tlt) and.diag(Bi) denotes a

1xn
diagonal nxn matrix with the diagonal element Bi. The initial condition
1s a(0]0) = E{a(0)} = [né o ek

Since

x(t+l) = [71.... Ty Ja(t+l) ,




we have

x(t+1|t41) = [y eeee ¥, ) a(el]e41) .
The performance index is

T-1
E{LT(x(T)) + ) Lt(x(t),u(t))}

J(u) =
t=0
¢ = Tl
= Ellg(ry) oo LyOr)] aC® + | (L, 0ry,u(0)) .. Ly (rg u(e)] a(e)
-~ a T-l -~ ~
= E{L, &(T|D) + ] L (u(®)) a(e[e)}, (21)
t=0
where iT’ it are vectors defined in the obvious manner. Thus, the

separation principle holds in this case since we have perfect observations
of &(tlt) for all t; that is, there is no loss of generality in considering
only control laws of the form u(t) = u(&(tlt)). Hence if the Aynamic
programming algorithm for the perfect observation problem (20)-(21) has a
solution, then the optimal feedback control u(t) for the original problem
will only depend on Ft(u) via &(tlt), which evolves according to the finite

dimensional filtering equation (20).

s




V. Conclusion

A more general method of constructing sysﬁém models for the
solution of discrete time stochastic control and estimation problems
has been presented. It involves the judicious choice of certain
o-algebras generated by the signal and observation processes. General
estimation equations have been derived, and numerous special cases have
been considered. The relationship between these estimation results and
stochastic control problems has been demonstrated by the example of
finite state Markov signals, for which the separation principle holds
and a finite dimensional filter exists. The representation theorem, and
hence the estimation equations, become much more difficult to interpret
if the observations take values in an uncountable space [5], [6], and
explicit results are difficult to obtain. However, explicit finite
dimensional estimators for a class of nonlinear systems with additive

Gaussian observation noise have been derived in [15].
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